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Dilution of nematic surface potentials: Relaxation dynamics
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Surface potentials can be regarded as diluted in space. By use of such a dilution model and Ericksen-Leslie
theory we study the free relaxation of a nematic liquid crystal on an anchoring surface, after removal of an
applied disorienting field. Depending on the initial distortions, we find either a relatively slow relaxation
controlled by the bulk, or a fast relaxation characteristic of the anchoring surface. Comparing the dynamics
described by the dilution model to one where the surface potential is localized, we estimate the surface
viscosity in terms of the extension length of the surface torques.

PACS number~s!: 61.30.2v, 68.10.Et
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I. INTRODUCTION

A special class of nematic displays controlled by surfa
properties has recently been proposed@1# ~for a review see
@2#!. These displays would be driven by the application
strong electric fields that couldbreak the surface anchoring
The switching mechanism proposed to explain their beha
relies on the dynamics of the surface reorientation, star
when the field is suddenly turned off. Little is known abo
this surface dynamics. As an extension of the class
Rapini-Papoular balance of surface torques, which in sta
describes the anchoring of the nematic director, Rapini
proposed a boundary condition that also includes a sur
diffusion mechanism@3#. Such a time dependent bounda
condition was already used in@4#. However, a systematic
theory was only put forward later independently by Derzh
ski and Petrov@5# and Kléman and Pikin@6#. This theory
embodies the concept of surface viscosity. Several aut
have since used this as a dynamical boundary condi
@7–11#.

In a previous paper@12# we attempted to illustrate th
possible hydrodynamic origin of this phenomenological s
face viscosity: to this end we adopted a mathematical mo
where the surface field responsible for the liquid crystal o
entation isdiluted in space over a thin anchoring layer;
similar dilution model had already been used in@13#. We
further reconciled this model with the classical Rapi
Papoular model in statics@14#. In @12# we wrote the evolu-
tion equations for this problem according to Ericksen-Les
theory @15# and made some conjectures concerning surf
dynamics. In particular, we suggested the existence of a
relaxation mode characteristic of the surface field.

In this paper we aim at solving the dynamical equatio
close to the boundary, resorting to both analytical and
merical methods. An interesting feature of this approach
that it does not rely on the dynamical Derzhanski-Pet
boundary condition; hence, knowing the solution of the e
lution problem within our model, we are able to estimate
PRE 621063-651X/2000/62~3!/3694~8!/$15.00
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phenomenological surface viscosity. This is indeed the s
stantial difference between our theory for surface nemato
namics and those already proposed.

The paper is structured as follows. In Sec. II we rec
how the Rapini-Papoular model has been extended
Derzhanski and Petrov to dynamics, and we address
problem of its compatibility with the evolution equation i
the bulk. In Sec. III, we describe the dilution model for th
surface field. Section IV is devoted to the analytic propert
of the solution to the evolution equation within this mode
Sections V and VI deal in detail with the two classes
relaxation problems already envisaged in@12#. In Sec. VII,
we illustrate the relationship between the dilution a
Derzhanski-Petrov models. Finally, in Sec. VIII we colle
the conclusions to be drawn from our paper.

II. ORIENTATIONAL DYNAMICS

We briefly recall the equations that have so far been p
ited to describe statics and dynamics of nematic liquid cr
tals in the presence of a bounding surface. Consider a liq
crystal occupying the regionB in space and subject to wea
anchoring on the boundary]B of B. The body is at equilib-
rium when the torque on the directorn vanishes both in the
bulk and on the bounding surface, that is, when

n3h50 in B ~1!

and

n3g50 on ]B, ~2!

whereh is commonly referred to as themolecular fieldandg
is the surfacemolecular field introduced by analogy in@5#.
Both h andg are computed from a variation of the nema
total free energy, including both volume and surface in
grals. LettingW5W(n,“n) andWs5Ws(n) be the volume
and surface free energy densities, one finds
3694 ©2000 The American Physical Society
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h5divS ]W

]“nD2
]W

]n
in B ~3!

and

g52
]Ws

]n
2

]W

]“n
n on ]B, ~4!

wheren is the outer unit normal to]B.
If the liquid crystal is not at equilibrium, these fields a

not aligned along the director: they induce elastic torq
which are balanced by the viscous torques. For simplic
we assume in the following that neither flow nor backflow
present, and so the energyD dissipated per unit volume i
given by

D5g1ṅ2, ~5!

whereg1 is the rotational viscosity@16,17#, and a superim-
posed dot denotes the material time derivative. The dyna
cal counterpart of Eq.~1! is

n3S h2
1

2

]D
]ṅ D50 in B. ~6!

The need for a similar balance of torques on the surf
also was felt rather early@3–6#, and various attempts hav
also been made to measure the corresponding viscosity~see,
e.g., @18#!. It seems natural to introduce a dissipation fun
tion Ds for the surface; the simplest expression for an isot
pic surface would be

Ds5gsṅ
2, ~7!

where gs5g1l is the surface viscosityand l is a surface
length. Recently, a more general expression forDs that also
takes into account surface anisotropy has been used@9#. In
this setting, the dynamical counterpart of Eq.~2! proposed by
Derzhanski and Petrov@5# is

n3S g2
1

2

]Ds

]ṅ D50 on ]B. ~8!

Without a diffusive process on the surface, it is inde
possible to construct initial conditions for the director su
that its incipient rotational velocity at the boundary gets
bitrarily large: it suffices to make the surface torque unb
anced at the initial time to induce a jump ofn at the surface
in the incipient dynamics. The introduction of a surface v
cosity in the way just recalled has, however, one seri
problem: since both Eqs.~6! and~8! specify the time deriva-
tive of the director on the boundary, a compatibility cond
tion arises. This is not peculiar to nematodynamics, nor
ordinary hydrodynamics: it simply stems from imaging a
laxation mechanism that involves the same time deriva
on the boundary as in the bulk. As a consequence, Eqs~6!
and ~8! do not generally allow a description of the direct
relaxation after the removal of an external field~see Sec. VII
for a detailed example of incompatibility and also for a w
to take care of it!.

In principle, a way to avoid this incompatibility would b
not to neglect molecular inertia, thereby introducing a sec
s
,
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time derivative ofn in the bulk equation. We take a differen
path here because molecular inertia would bring in a mole
lar length smaller thanl: we continue to neglect inertia an
accordingly abandon the idea of a localized surface diss
tion. This is the reason why we adopt the dilution mod
described below.

III. DILUTION MODEL

As remarked in the preceding section, describing the s
face anchoring through the Derzhanski-Petrov boundary c
dition in general prevents a proper treatment of surface
namics. Here we resort to a model that circumvents a
incompatibility that this condition may cause.

To illustrate this model, we consider a liquid crystal
one space dimension with the anchoring on a single supp
ing wall competing against an external electric field. We
sume the cell to be semi-infinite and restrict the director t
plane perpendicular to the wall. Since here only splay a
bend deformations are relevant, the elastic contribution to
free energy densityWdef can be written by using the one
constant approximation to the Oseen-Frank elastic free
ergy density:

Wdef5
K

2
~“n!25

K

2
~q8!2, ~9!

whereK is an average elastic modulus,q is the angle that the
director makes with the bounding plate, and a prime deno
differentiation with respect to the distancez from the plate.
The density of the electric energyWele is given in SI units by

Wele5
1
2 «0«aE2 sin2~q2qe!, ~10!

where«0 is the dielectric constant of vacuum,«a.0 is the
relative dielectric anisotropy,E is the strength of the electric
field, andqe defines the direction along which it is applie
For simplicity, the electric field is assumed to be unifor
throughout the cell and, in most of the paper, orthogona
the plate (qe5p/2).

In the dilution model, no singular surface energyWs is
defined on the bounding plate. The action of the surface
rather carried by a further bulk term, which describes h
the surface torques decay with the distance from the wa

Wdª
1

2 E0

`

D~z!sin2 q dz, ~11!

where D(z) is the strength of the surface potential at t
point with coordinatez. The anchoring described by Eq.~11!
is planar, that is, the preferred surface alignment is paralle
the plate. It is convenient to define a total strengthA of the
anchoring by

AªE
0

`

D~z!dz ~12!

and a characteristic dilution length by

hª

E
0

`

zD~z!dz

E
0

`

D~z!dz

. ~13!
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3696 PRE 62SONNET, VIRGA, AND DURAND
With these definitions the surface energy is rewritten as

Wd5
A

2h E0

`

d~z!sin2 q~z!dz, ~14!

where now

d~z!ª
h

A
D~z! ~15!

is a dimensionless dilution function that is normalized
*0

`d(z)dz5h. We consider only weak anchoring, which
characterized by the inequalityh!L where

LªK/A. ~16!

It was found in@14# that in this caseL can be interpreted a
the usual surface extrapolation length.

With the potential in Eq.~11!, the time evolution for the
nematic orientation is governed by the equation

tsq̇5js
2q92

1

2 S d2
js

2

je
2D sin 2q. ~17!

Here the surface length

jsªAKh/A5ALh ~18!

and the surface time

tsª
g1

K
js

2 ~19!

have been introduced, along with the electric cohere
length

jeª
1

E
AK/«0«a. ~20!

Equation~17! is subject to the boundary condition

q850 at z50 for all t>0. ~21!

This reflects the fact that no localized torque is transmitte
the boundary. Unlike Eq.~8!, this does not entrain any com
patibility condition. For the typical valuesL5100 nm, h
510 nm, K510211N, and g151022 kg m21 s21, it turns
out thatts51 ms.

Essentially, the relaxation problem we study exhibits
competition between the surface orientation, which w
evolve fast, and the bulk orientation, which will drag behi
and hamper it. In the following sections we strive to ma
this intuitive description precise.

IV. PROPERTIES OF SOLUTIONS

No solution in closed form is available for Eq.~17! even
for simple choices of the dilution functiond. A simpler ver-
sion of Eq.~17! is indeed the Fisher-Kolmogorov equatio
To tackle this problem, we pursue a twofold approach. Inf
mation about the incipient dynamics can be gained by a
earization about the initial data. For the dynamics at la
times, we resort to a numerical solution of Eq.~17! with
e

at

a
l

-
-
r

special choices for the dilution potential and viscosity.
Because here the surface effects are diluted in space

orientation atz50 is not necessarily the best measure of
surface evolution. Instead, for a functionv, we introduce a
localized norm defined by

ivi2ªA~1/h!E
0

h

v2dz, ~22!

which expresses an average ofv over the shortest meaning
ful length near the surface.

To evaluate the speed of the director reorientation wh
the initial condition is represented by the functionw
5w(z), we define

u~z,t !ªq~z,t !2w~z!. ~23!

It readily follows from Eq.~17! that close to the initial time
u obeys the linearized equation

tsu̇5js
2u92 f u1g, ~24!

where

fªd cosw ~25!

and

gªjs
2w92 1

2 d sin 2w. ~26!

The surface relaxation is represented by the time evo
tion of iui2 . The following estimate for the first derivativ
of iui2 is obtained by use of Schwarz’s inequality:

d

dt
iui25

*0
huu̇ dz

Ah*0
hu2dz

<i u̇i2 . ~27!

Sinceu[0 at t50, from both Eqs.~24! and ~27! an upper
bound for the initial speed of the surface relaxation eas
follows:

d

dt
iui2~0!<

1

ts
igi2 . ~28!

Moreover, as long asu obeys the condition

uu8uz5h,0, ~29!

a finer estimate can be derived from an extension of
Wirtinger inequality@19#: for t sufficiently small

iui2<
igi2

js
2g0

2/h22i f i`
~12e2js

2g0
2/h22i f i`t/ts!, ~30!

where i f i` is the supremum ofufu in @0,h# and g0 is the
smallest root of the equation

2g0 tang05
hg8~h!

g~h!
. ~31!

In this way, besides the speed of the incipient relaxation,
can also estimate the time scale over which this takes pl
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In the following we study the relaxation from two class
of initial director configurations: namely, equilibrium pro
files generated by a finite electric field and totally flat pr
files. We devote two distinct sections to the analysis of th
different relaxation processes: we shall see that one is s
while the other is fast.

V. SLOW DYNAMICS

Here we discuss the free relaxation of an equilibrium p
file after the removal of the electric field that has produced
We first consider the case where the electric field is ab
the saturation value. The orientationq is then uniform at the
beginning,q[p/2. Switching off the field changes a stab
equilibrium into an unstable one, but it does not prompt a
relaxation, in the absence of either external perturbation
thermal fluctuations. This problem exceeds the scope of
present paper.

We now focus attention on the case where the field
below the saturation value. The corresponding equilibri
profiles have been treated in a previous work@14#. Without
solving the dynamic equation, an estimate for the time sc
of the incipient evolution can be obtained from the sta
solution. Sincew is at equilibrium in the presence of th
field, by Eq.~17!, it obeys the equation

js
2w95

1

2 S d2
js

2

je
2D sin 2w. ~32!

Thus, at the instant when the electric field is switched off,
Eq. ~26!,

g5js
2w92

d

2
sin 2w5

js
2

2je
2 sin 2w<

js
2

2je
2 . ~33!

This upper bound forg is attained forw5p/4, which, for a
surface anchoring sufficiently strong, is a value actua
taken by the initial profile near the boundary. By Eq.~28!,
the fastest possible time is thus

ts

2je
2

js
2 52

g1

K
je

252te , ~34!

where the electric relaxation timete is defined as

teª
g1

K
je

2. ~35!

It follows from Eq.~17! that after the removal of the field
the evolution ofq is governed by

tsq̇5js
2q92 1

2 d sin 2q. ~36!

At later times, the surface angle will approach zero and
evolution will become even slower while the profile kee
diffusing in the bulk.

This picture is confirmed by numerical solutions of E
~36! subject to Eq.~21! for a number of initial conditions. It
is expedient to introduce the subsurface relaxation timeth
defined as
-
e
w,

-
t.
e

y
or
e

s

le

y

y

s

.

thª
g1

K
h2; ~37!

by comparing this to Eq.~19!, one sees thatth is shorter than
the surface timets by the ratioh2/js

2. Sincets is already in
the range of microseconds,th could then be a much shorte
time.

For the numerical solution we chosed(z)5exp(2z/h) and
we made Eq.~17! dimensionless by normalizing the leng
to h and the time toth . To work on a finite space interva
we used the transformationz̃512(11z)21/p with p53.
The resulting grid automatically has the feature that the
teresting region close to the boundary is more finely
solved. We used a finite difference scheme with a se
implicit time discretization of the Crank-Nicolson type an
1000 points for the space grid. The examples below w
obtained withjs55h and accordinglyL525h. The electric
field was chosen such that the angleq0 that describes the
director orientation at the surface satisfiesq0'p/4 at equi-
librium. We took je536h; it was proved in @14# that
sinq05L/je for h!L.

Qualitatively, Fig. 1 shows the typical surface relaxati
of the orientation accompanied by a diffusion in the bulk
the rotational velocityq̇. The characteristic time of this evo
lution is te , and so it depends on the field that has produc
the initial equilibrium profile~see also@12#!: this time is
larger thants , but is still shorter than the relaxation tim
associated with a typical Fre´edericksz transition. In practice
te could be 10ms for a 10 V/mm voltage applied across
cell with Fréedericksz transition at 1 V/mm.

At early times the relaxation takes place as if an effect
field were slowly reduced in time with an effective cohe
ence lengthĵe(z,t). This length is defined by pretending th
q is a solution to Eq.~32! with ĵe instead ofje . By com-
paring this equation and Eq.~36! we readily arrive at

je
2

ĵe
2~z,t !

52
2teq̇

sin 2q
. ~38!

FIG. 1. Typical evolution starting from an equilibrium profil
produced by a field with coherence lengthje536h. Two adjacent
profiles differ in time by 1000th .
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3698 PRE 62SONNET, VIRGA, AND DURAND
Initially ĵe5je , and an estimate for the incipient dynam
ics easily follows from Eq.~38!:

tanq5tanqu t50e2t/te for t→01. ~39!

At later times,ĵe and je start to differ from one another a
the surface, because the rotational velocity decreases clo
the surface, while it diffuses into the bulk. We call this ev
lution adiabatic, as it can be regarded as a sequence in
of equilibrium profiles. All these results confirm the conje
ture already made in@12#: although the surface alone cou
intrinsically relax faster, it is slowed down by the orientatio
curvature needed to match the bulk profile.

VI. FAST DYNAMICS

The adiabatic dynamics does not reveal the short timets
associated with the full strength of the surface field, j
because close to equilibrium it is almost balanced by
curvature densityq9 concentrated within the dilution length
The memory of the field, kept in the bulk curvature ove
characteristic lengthje , relaxes with ratete

21.
Higher rotational velocities can be expected when the

tial profile is flat. As above, we discard the caseq[p/2
because its relaxation can be driven only by fluctuations.
can imagine, for instance, applying a sufficiently stro
shear that produces the profileq[q0,p/2 from the one
obtained by an electric field above saturation. We study h
the relaxation dynamics after the instantaneous remova
both shear and field.

In @12# it was conjectured that for such an initial profi
the subsequent dynamics consists of two parts: In the
one, the flat profile builds up curvature densityq9 close to
the boundary during the short timets ; in the second one, an
adiabatic evolution takes place as above with a longer t
tLª(L/h)ts . The characteristic time of the incipient rela
ation can indeed be estimated asts from Eq. ~36!, which at
the initial time and forz50 gives 2tsq̇5d(0)sin 2q0.

A finer description of the incipient dynamics is delivere
by the following argument. We take againd(z)5exp(2z/h)
and explore the consequences of inequality~30! when w
[q0 . We first note that the right-hand side of Eq.~31! is 21
for all q0 , and sog0'0.86. Then we write Eq.~30! in a
shorter form:

iui2<a0~12e2t/t0! ~40!

and, for h!L, we estimate both the amplitudea0 and the
relaxation timet0 as

a0'
1

3
sin 2w0

h2

js
2g0

2 , t0'ts

h2

js
2g0

2 'th . ~41!

We thus expect a fast incipient increase ofiui2 .
As an example, we calculate the evolution starting fro

the constant profileq05p/4 with the same values of th
parameters as in Sec. V. In Fig. 2 we plot five profiles in
evolution for 0,t<th . At first, the profile tends to adjus
itself to the shape of the exponential dilution function th
determines the initial angular velocity. This induces a ne
to

e

t
e

i-

e

re
of

st

e

e

t
-

tive curvature everywhere, except close to the bound
whereq8 has to vanish. This requirement creates a posit
curvature densityq9.0.

The accuracy of the estimate in Eq.~40! is shown in Fig.
3, where the actual evolution ofiui2 computed numerically
is compared to the exponential bound in Eq.~40!. The right-
hand side of Eq.~30! actually represents anosculatingexpo-
nential toiui2 at t50.

All this concerns incipient dynamics. To show the evol
tion at later times, we plot in Fig. 4 the function

veff~ t !ª
2tsq̇

sin 2q
U

z50

. ~42!

It can be regarded as an effective rotational velocity.
whole distribution of relaxation times is found in its deca
which reflects the fact that a finite surface energy is dis
pated over a region ever penetrating the bulk, leading t
slower and slower process.

FIG. 2. Evolution starting from the constant profileq[p/4.
Two adjacent profiles differ in time by 0.2th . The initial reorien-
tation builds up curvature that compensates the surface torque;
the evolution becomes slower.

FIG. 3. The evolution of the difference norm in the incipie
dynamics. The osculating exponential att50 shows the shortes
relaxation time.
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To make our discussion more quantitative, we define
each timet0 an amplitudeuA(t0)u and a relaxation rater (t0)
by requiring that the exponential

A~ t0!e2r ~ t0!~ t2t0!1B ~43!

be osculating the graph of the functiona(t)ªiui2 at t
5t0 . An easy computation gives

r ~ t0!52
ä

ȧU
t5t0

and A~ t0!5
ȧ2

ä U
t5t0

. ~44!

In Fig. 5 we plotuAu againstr using t0P@0,103ts# as a pa-
rameter for the same evolutions shown in Figs. 1 and 2.
the fast relaxation, the maximum amplitude actually appe
for r 21'8.5ts at the timet0'6ts . Indeed,ts would be the
relaxation time of an isolated layer with thicknessh in the
absence of bulk. The relaxation rate with maximum amp
tude is here reminiscent of this pure surface relaxation mo
it conveys throughh information on the internal structure o
the surface. For the slow relaxation, the amplitude attains

FIG. 4. Effective rotational velocity atz50 as a measure of th
surface rotational velocity. No fixed time scale can be identified;
surface dynamics becomes slower as the diffusion proceeds int
bulk.

FIG. 5. Osculating exponentials. Parametric plots of the am
tude versus the dimensionless relaxation rate for both fast and
dynamics.
t

or
rs

-
e:

ts

maximum att050; initially the relaxation time is 2te and
then it slightly decreases towardtL while the memory of the
field fades away.

VII. CLASSICAL SURFACE VISCOSITY

In Sec. II we discarded the Derzhanski-Petrov bound
condition ~8! because it is not generally consistent with t
evolution equation in the bulk. Nevertheless, it has be
adopted by many authors as it conveys the idea that
balance of surface torques contains the essence of su
dynamics@9,11#. Here we show that this idea can indeed
given a precise meaning by interpreting the Derzhans
Petrov boundary condition within the dilution model.

We adjust the director profile near the boundary so tha
complies with the Derzhanski-Petrov condition at the init
time: no discontinuity thus arises on the boundary at
times, although the profile evolution is different. By compa
ing the evolution that obeys the Derzhanski-Petrov condit
and that predicted by the dilution model, we can apprec
how they depart from one another in time. Sincegs in Eq.
~7! is a phenomenological parameter, choosing it so as
minimize this departure offers a means to relate the surf
length l and the dilution lengthh.

We now illustrate by example both the incompatibili
arising from the Derzhanski-Petrov boundary condition a
our strategy to remedy it. In the same setting employed
Sec. III, the dynamic equation in the bulk takes the gene
form

g1q̇5Kq91F~E,q!, ~45!

whereq is the angle that the director makes with the boun
ing plate,K is the elastic modulus, andF is a function that
describes the action of an external field with strengthE. F
vanishes wheneverE does; it is easily seen that Eq.~17! is a
special case of Eq.~45!. Let now q0(t)ªquz50 denote the
director orientation at the surface. The typical Rapi
Papoular surface energy densityWs is given by

Ws5
A

2
sin2 q0 , ~46!

where A is the strength of the anchoring. The dynam
boundary condition obtained from Eq.~8! with Eq. ~7! then
reads as

g1l

K
q̇05q8uz502

1

2L
sin 2q0 , ~47!

whereL is defined as in Eq.~16!.
At equilibrium, the left-hand sides of both Eq.~45! and

Eq. ~47! vanish. When the field is abruptly switched off,F

undergoes a jump, and according to Eq.~45! q̇Þ0. Since,
however, at the initial time the director profile is unchange
Eq. ~47!, which does not depend on the field, still requir
q̇050, and so Eqs.~45! and~47! fail to be compatible at the
very beginning.

This incompatibility can be removed by adjusting the in
tial director profile. To this end we change both the slope a
the curvature of the initial profile close to the boundary

e
the

i-
w
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that the bulk and surface rotational velocities match. We p
form a local adaptation that affects the functionw(z)
ªqu t50 over a lengthj underneath the surfacez50. For-
mally, we replacew by

wa~z!ª~11aze2z/j!w~z!. ~48!

Clearly,wa(0)5w(0), and, sincew8(0)50,

wa8 ~0!5aw~0! and wa9~0!52
2a

j
w~0!1w9~0!.

~49!

On the other hand, whenE vanishes,wa causes both Eqs
~45! and ~47! to deliver the same surface rotational veloc
at t50, provided that

wa8 ~0!5
sin 2w~0!

2L
1 lwa9 ~0!. ~50!

By inserting Eq.~49! into Eq. ~50!, this latter becomes an
equation fora, which yields

a5
j@sin 2w~0!12Llw8~0!#

2L~2l 1j!w~0!
. ~51!

Thus Eq.~48! delivers an adapted initial profilewa which
complies with the Derzhanski-Petrov boundary conditio
The adaptation lengthj can be chosen so as to makewa the
closest possible tow: the shorterj, the smaller the deviation
betweenwa andw. For a as in Eq.~51!, wa evolves accord-
ing to Eqs.~45! and ~47!.

We solved these equations numerically forw[p/4 and
different values ofl and j. While varying j in the interval
@0,h# had almost no effect on the evolution ofwa , the
changes inl were detectable. Figure 6 illustrates the sna
shots att5th from three different evolutions, namely, th
one ruled by the dilution model and those corresponding
l 50 andh: relative to the first one, the surface evolution
quicker for l 50 and slower forl 5h; in both casesj5h/2.
Figure 7 shows a different view of the same comparis
here the surface orientationquz50 is plotted as a function o

FIG. 6. Snapshots att5th from the evolution of the adapted an
nonadapted profiles. The initial nonadapted profile isq[p/4; it is
adapted to surface viscosities withl 50 andh.
r-

.

-

o

:

time for the three different evolutions. The graph obtain
from the dilution model is uniformly bounded between tho
of the adapted evolutions withl 50 andh; this suggests tha
choosing the surface lengthl in the interval @0,h# would
make the surface relaxation of the adapted initial pro
agree with that of the nonadapted one. A similar computat
was performed for the relaxation from equilibrium after r
moval of the field; for everyl P@0,h# the surface relaxation
of the adapted profile was almost indistinguishable from t
of the nonadapted one.

This is an exact way of interpreting the Derzhanski-Pet
condition. Although it cannot be properly applied to all in
tial director profiles, it can be to the adapted ones. The co
parison between the evolution of adapted and nonada
profiles shows that the phenomenological surface lengl
hidden in the surface viscosity is indeed close to the lengh
over which the surface potential extends into the bulk.

VIII. CONCLUSIONS

We studied the relaxation of the anchoring of nema
liquid crystals close to a solid boundary. We employed
mathematical model where the orienting field at the interfa
between the liquid crystal and the solid substrate is not c
centrated at the boundary, but is diluted over a small, tho
still macroscopic, layer with thicknessh. We studied a mode
problem where the preferred orientation induced by the s
face field is parallel to the boundary. The nematic orientat
is distorted by an electric field orthogonal to the boundi
plate. The equilibrium problem had already been treated
@12,14#. Here we attacked the dynamical problem that ari
when an initial profile is allowed to relax freely. We consi
ered two classes of initial profiles, namely, equilibrium pr
files obtained by applying and then abruptly removing
electric field with strength below saturation, and flat profile
possibly produced by combining fields above saturation
an applied shear flow, both suddenly removed. We wrote

FIG. 7. Comparison of the surface orientation for the evolut
of adapted and nonadapted profiles. The initial nonadapted profi
q[p/4; it is adapted to surface viscosities withl 50 andh. The
surface evolution predicted by the dilution model can be mimick
by a surface viscosity falling between 0 andg1h.
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evolution equation for this problem, made analytical es
mates for its main features, and computed its solutions
merically.

The main result of this paper is the dramatic difference
the relaxation dynamics following initial states in the
classes. The evolution starting from equilibrium profiles af
removal of the field follows adiabatically quasiequilibriu
profiles corresponding to lower electric fields; the charac
istic relaxation time is of the ordertL5g1L2/K ~or larger!,
which depends only on the total strength of the diluted s
face potentialA5K/L. In generalL is smaller than the typi-
cal size of nematic cells, so thattL should be considered as
short time in standard nematodynamics. In this mode
relaxation is indeed controlled by the bulk, and the surfa
remains at equilibrium. The real surface relaxation mo
where most of the dissipation is localized near the bound
corresponds to what is here called the fast mode; it is a
ciated with the other class of initial profiles, whose char
teristic time is found to be of the order ofts5g1hL/K.
Since in the dilution model employed hereh!L, then ts
!tL . At later times, however, this fast mode is hampered
bulk diffusion and behaves as a slow mode.

In principle, it seems plausible to realize a flat initial pr
file by using an external fieldE` that is extremely large and
has suitable orientation. One could then argue that ther
only one class of free relaxation problems to discuss, tha
those originating from profiles produced by a field: the
laxation mode with maximum amplitude should then cor
spond to the relaxation rate 1/t` which diverges likeE`

2 . In
fact, this is true as long as the coherence lengthje associated
with the applied fieldE` is larger thanh: the curvature den-
sity present in the bulk before relaxation keeps memory
the field and determines a relaxation rate 1/te . When, how-
ever,je is smaller thanh, no memory of the field is left and
-
u-
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r-

r-

e
e
,
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y

is
s,
-
-

f

the relaxation rate of the mode with maximum amplitude
1/ts , associated now with the surface field, which reveals
intrinsic property of the anchoring.

We have evidence that these results are valid for a la
range of parameters and different dilution laws, providedh
!L. It could be useful to measure these relaxation proces
first to check the validity in dynamics of the dilution mode
and then possibly to obtain information on the internal str
ture of the surface by comparingts with tL .

For simplicity, we have not considered here the effect
viscosity introduced in@12# to account for the backflow; ac
tually, any flow has been neglected in the relaxation. W
have numerical evidence that the reduction of viscosity d
to backflow could slightly modify these results, but it wou
not change the difference between the slow and fast re
ation. This will be illustrated elsewhere.

The Derzhanski-Petrov dynamical boundary conditio
which introduced the surface viscositygs , has been widely
accepted up to now because it seemed to convey a phy
meaning: it was natural to derive a surface viscous tor
from a localized surface dissipation. An important po
made at the beginning of our work is the condition on t
initial director profile required to make bulk and surface d
namics compatible. This compatibility restriction preven
the general use of the Derzhanski-Petrov boundary co
tion. We have developed a general strategy to adapt the
tial profile so as to make this condition applicable. The
teresting outcome of the comparison between this ada
evolution and the one predicted by the dilution model is t
the surface lengthl hidden ings turns out to be close to the
thicknessh of the layer where the surface potential is dilut
into the bulk. With such a proper choice for the surface v
cosity, the classical Derzhanski-Petrov model and the d
tion model give comparable outcomes.
ce
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