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Dilution of nematic surface potentials: Relaxation dynamics
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Surface potentials can be regarded as diluted in space. By use of such a dilution model and Ericksen-Leslie
theory we study the free relaxation of a nematic liquid crystal on an anchoring surface, after removal of an
applied disorienting field. Depending on the initial distortions, we find either a relatively slow relaxation
controlled by the bulk, or a fast relaxation characteristic of the anchoring surface. Comparing the dynamics
described by the dilution model to one where the surface potential is localized, we estimate the surface
viscosity in terms of the extension length of the surface torques.

PACS numbd(s): 61.30—v, 68.10.Et

[. INTRODUCTION phenomenological surface viscosity. This is indeed the sub-
stantial difference between our theory for surface nematody-
A special class of nematic displays controlled by surfacenamics and those already proposed.

properties has recently been propo$&t (for a review see The paper is structured as follows. In Sec. Il we recall
[2]). These displays would be driven by the application ofhow the Rapini-Papoular model has been extended by
strong electric fields that couldreakthe surface anchoring. Derzhanski and Petrov to dynamics, and we address the
The switching mechanism proposed to explain their behavioProblem of its compatibility with the evolution equation in
relies on the dynamics of the surface reorientation, starting?€ Pulk. In Sec. 1ll, we describe the dilution model for the
when the field is suddenly turned off. Little is known about Surface field. Section IV is devoted to the analytic properties
this surface dynamics. As an extension of the classica?f th_e solution to the evo!utlon e'qua_tlon within this model.
Rapini-Papoular balance of surface torques, which in staticsctions V and VI deal in detail with the two classes of
describes the anchoring of the nematic director, Rapini hakelaxation problems already envisaged(#2]. In Sec. VI,
proposed a boundary condition that also includes a surfacée illustrate the relationship between the dilution and
diffusion mechanism3]. Such a time dependent boundary Derzhanskl—.Petrov models. Finally, in Sec. VIII we collect
condition was already used {@]. However, a systematic the conclusions to be drawn from our paper.
theory was only put forward later independently by Derzhan-
ski and Petro[5] and Kleman and Pikin[6]. This theory Il. ORIENTATIONAL DYNAMICS

embodies the concept of surface viscosity. Several authors ) ,
have since used this as a dynamical boundary condition We briefly recall the equations that have so far been pos-
[7-11]. ited to describe statics and dynamics of nematic liquid crys-

In a previous papef12] we attempted to illustrate the tals in the presence of a l_)ounding surface. Co_nsider a liquid
possible hydrodynamic origin of this phenomenological sur-CTyStal occupying the regiofi in space and subject to weak
face viscosity: to this end we adopted a mathematical modétnchoring on the bounda@ss of 5. The body is at equilib-
where the surface field responsible for the liquid crystal ori-'UMm when the torque on the directorvanishes both in the
entation isdiluted in space over a thin anchoring layer; a PUlk @nd on the bounding surface, that is, when
similar dilution model had already been used[ir8]. We _
further reconciled this model with the classical Rapini- nxh=0 in B )
Papoular model in statidd4]. In [12] we wrote the evolu-
tion equations for this problem according to Ericksen-Leslieand
theory[15] and made some conjectures concerning surface
dynamics. In particular, we suggested the existence of a fast nXg=0 on JB, 2
relaxation mode characteristic of the surface field.

In this paper we aim at solving the dynamical equationsvhereh is commonly referred to as thmolecular fieldandg
close to the boundary, resorting to both analytical and nuis the surfacemolecular field introduced by analogy [B].
merical methods. An interesting feature of this approach i€oth h andg are computed from a variation of the nematic
that it does not rely on the dynamical Derzhanski-Petrovtotal free energy, including both volume and surface inte-
boundary condition; hence, knowing the solution of the evo-grals. LettingWW=W(n,Vn) andWs=Wg(n) be the volume
lution problem within our model, we are able to estimate theand surface free energy densities, one finds
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IW OW time derivative ofn in the bulk equation. We take a different
h—div(w—n) o in B () path here because molecular inertia would bring in a molecu-
lar length smaller thait we continue to neglect inertia and
and accordingly abandon the idea of a localized surface dissipa-
tion. This is the reason why we adopt the dilution model
IWs  IW described below.
== avn? on B, (4)

IIl. DILUTION MODEL

wherew is the outer unit normal teB.

If the liquid crystal is not at equilibrium, these fields are fa
not aligned along the director: they induce elastic torques;
which are balanced by the viscous torques. For simplicityn
we assume in the following that neither flow nor backflow is
present, and so the ener@y dissipated per unit volume is
given by

As remarked in the preceding section, describing the sur-
ce anchoring through the Derzhanski-Petrov boundary con-
tion in general prevents a proper treatment of surface dy-
amics. Here we resort to a model that circumvents any
incompatibility that this condition may cause.

To illustrate this model, we consider a liquid crystal in
one space dimension with the anchoring on a single support-
D= y,02, (5) ing wall competing agair_lst an external el_ectric fie_ld. We as-

sume the cell to be semi-infinite and restrict the director to a

wherey, is therotational viscosity{16,17], and a superim- Plane perpendicular to the wall. Since here only splay and

posed dot denotes the material time derivative. The dynampend deformations are relevant, the elastic contribution to the
cal counterpart of Eq(1) is free energy densityVyes can be written by using the one-

constant approximation to the Oseen-Frank elastic free en-

h 1D ergy density:

X
n 2 Jn

=0 in B. (6)

K K
. Weer=5 (VN)2=—-(9")?, 9
The need for a similar balance of torques on the surface 2 2
also was felt rather early3—6], and various attempts have
also been made to measure the corresponding visossgy
e.g.,[18]). It seems natural to introduce a dissipation func-
tion Dy for the surface; the simplest expression for an isotro
pic surface would be

whereK is an average elastic modulusjs the angle that the
director makes with the bounding plate, and a prime denotes
differentiation with respect to the distanzdrom the plate.
The density of the electric enerdy, is given in Sl units by

1 .
Dy it @ Weie= 3808 ,E2 SIP(9—9,), (10)
whereg, is the dielectric constant of vacuuma,>0 is the
where y,= ;| is the surface viscosityand | is a surface relative dielectric anisotrop) is the strength of the electric
length. Recently, a more general expressionTigtthat also  field, and, defines the direction along which it is applied.
takes into account surface anisotropy has been [Bpdn For simplicity, the electric field is assumed to be uniform
this setting, the dynamical counterpart of E2). proposed by  throughout the cell and, in most of the paper, orthogonal to

Derzhanski and Petrd\b] is the plate .= m/2).
In the dilution model, no singular surface eneng is
n><< _ } 'ms) —0 on B ) defined on the bounding plate. The action of the surface is
2 on ' rather carried by a further bulk term, which describes how

the surface torques decay with the distance from the wall:
Without a diffusive process on the surface, it is indeed

possible to construct initial conditions for the director such
that its incipient rotational velocity at the boundary gets ar-
bitrarily large: it suffices to make the surface torque unbal-
anced at the initial time to induce a jump ofat the surface WhereD(2) is the strength of the surface potential at the
in the incipient dynamics. The introduction of a surface vis-point with coordinate. The anchoring described by Ed.1)
cosity in the way just recalled has, however, one seriouss planar, thatis, the preferred surface alignment is parallel to
problem: since both Eq$6) and(8) specify the time deriva- the pla_te. It is convenient to define a total strengtbf the

tive of the director on the boundary, a compatibility condi- anchoring by

tion arises. This is not peculiar to nematodynamics, nor to w

ordinary hydrodynamics: it simply stems from imaging a re- A:=j D(z)dz (12
laxation mechanism that involves the same time derivative 0

on the boundary as in the bulk. As a consequence, &js.
and (8) do not generally allow a description of the director

Wd‘:; f:D(z)sinz 9dz, (1D

and a characteristic dilution length by

relaxation after the removal of an external figdgte Sec. VII o

for a detailed example of incompatibility and also for a way fo zD(z)dz

to take care of jt hi=————. (13
In principle, a way to avoid this incompatibility would be f D(z)dz

not to neglect molecular inertia, thereby introducing a second
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With these definitions the surface energy is rewritten as
A (= )
Wd=—f d(z)sir? 9(z)dz, (14)
2h Jo
where now

h
d(z) ’=KD(Z) (15

is a dimensionless dilution function that is normalized to

Jod(z)dz=h. We consider only weak anchoring, which is
characterized by the inequality<L where

L:=K/A. (16)
It was found in[14] that in this casé. can be interpreted as
the usual surface extrapolation length.

With the potential in Eq(11), the time evolution for the
nematic orientation is governed by the equation

' 2 1 g .
TO=E50"— = | d— —|sin 29. (17)
2 &

Here the surface length

£¢=yKh/A=\Lh (18)
and the surface time
Y1

To=c €5 (19
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special choices for the dilution potential and viscosity.

Because here the surface effects are diluted in space, the
orientation atz=0 is not necessarily the best measure of the
surface evolution. Instead, for a function we introduce a
localized norm defined by

h
ollo= /(1) fovzcjz,

which expresses an averagewobver the shortest meaning-
ful length near the surface.

To evaluate the speed of the director reorientation when
the initial condition is represented by the functiop
= ¢(2), we define

(22)

u(z,t):=9(z,t) — ¢(2). (23

It readily follows from Eq.(17) that close to the initial time
u obeys the linearized equation

Tu=¢u"—fu+g, (24)
where
f:=d cose (25
and
gi=£2¢"— 3 dsin2¢. (26)

The surface relaxation is represented by the time evolu-
tion of ||ul|,. The following estimate for the first derivative
of ||ul|, is obtained by use of Schwarz’s inequality:

have been introduced, along with the electric coherence

length
1
§e==E VK/gge ;. (20
Equation(17) is subject to the boundary condition
9'=0 atz=0 for all t=0. (22

This reflects the fact that no localized torque is transmitted at

the boundary. Unlike Eq8), this does not entrain any com-
patibility condition. For the typical valuek=100nm, h
=10nm, K=10"!N, and y;=10"?kgm 1s™%, it turns
out thatrs=1 us.

d

Sl @7

Sinceu=0 att=0, from both Eqs(24) and (27) an upper
bound for the initial speed of the surface relaxation easily
follows:

@ Jull0)= = g] 28
—|lu < — .
dt' "2 T gll2
Moreover, as long as obeys the condition
uu’|,=p<0, (29)

Essentially, the relaxation problem we study exhibits a ) ) )
competition between the surface orientation, which will@ finer estimate can be derived from an extension of the

evolve fast, and the bulk orientation, which will drag behind Wirtinger inequality[19]: for t sufficiently small

and hamper it. In the following sections we strive to make

this intuitive description precise.

IV. PROPERTIES OF SOLUTIONS

No solution in closed form is available for E(L7) even
for simple choices of the dilution functioth A simpler ver-
sion of Eq.(17) is indeed the Fisher-Kolmogorov equation.

To tackle this problem, we pursue a twofold approach. Infor-

lgll2

_ #2202
||U||2$§27(2)/h—2_”f”(1_e v/t
s o

(30

where | f||.. is the supremum off| in [0,h] and v, is the
smallest root of the equation

hg'(h)

— Yo tanyo=w. (31

mation about the incipient dynamics can be gained by a lin-
earization about the initial data. For the dynamics at latein this way, besides the speed of the incipient relaxation, we
times, we resort to a numerical solution of E4.7) with can also estimate the time scale over which this takes place.



PRE 62 DILUTION OF NEMATIC SURFACE POTENTIALS. .. 3697

In the following we study the relaxation from two classes w72 - - - .
of initial director configurations: namely, equilibrium pro-
files generated by a finite electric field and totally flat pro-
files. We devote two distinct sections to the analysis of these
different relaxation processes: we shall see that one is slow
while the other is fast.

V. SLOW DYNAMICS

Here we discuss the free relaxation of an equilibrium pro-
file after the removal of the electric field that has produced it.
We first consider the case where the electric field is above
the saturation value. The orientatiénis then uniform at the
beginning,d= m/2. Switching off the field changes a stable
equilibrium into an unstable one, but it does not prompt any
relaxation, in the absence of either external perturbations o/ © : : : '

) . 0 20 40 60 80 100
thermal fluctuations. This problem exceeds the scope of the 2ih
present paper.

We now focus attention on the case where the field is FIG. 1. Typical evolution starting from an equilibrium profile
below the saturation value. The corresponding equilibriunproduced by a field with coherence lengti=36h. Two adjacent
profiles have been treated in a previous wpitk]. Without  profiles differ in time by 1008, .
solving the dynamic equation, an estimate for the time scale
of the incipient evolution can be obtained from the static - ::ﬂhz_ 37)
solution. Sinceg is at equilibrium in the presence of the TR
field, by Eq.(17), it obeys the equation

by comparing this to Eq19), one sees that, is shorter than

§ the surface timerg by the ratiohzlgi. Sincerg is already in
"= §<d— 7) sin 2¢. (32 the range of microseconds, could then be a much shorter
e time.

For the numerical solution we chodéz) = exp(—zh) and

Thus, at the instant when the electric field is switched off, byWe made Eq(17) dimensionless by normalizing the length

Eg. (26), to h and the time tor,. To work on a finite space interval,
d &2 2 we used the transformatich=1—(1+z) P with p=3.
g=£2¢"— = sin2¢= —stin 2p< _52 (33 The r(.asulting. grid automatically has the fgature that the in-
2 28, 285 teresting region close to the boundary is more finely re-

) ) . ) solved. We used a finite difference scheme with a semi-
This upper bound fog is attained fore = /4, which, for a jmplicit time discretization of the Crank-Nicolson type and
surface anchoring sufficiently strong, is a value actually1000 points for the space grid. The examples below were
taken by the initial profile near the boundary. By E88),  optained withé,=5h and accordingly = 25h. The electric
the fastest possible time is thus field was chosen such that the angdlg that describes the

5 director orientation at the surface satisfigg~ /4 at equi-
Tﬁ librium. We took &.=36h; it was proved in[14] that
S ¢z sindy=L/& for h<L.

Qualitatively, Fig. 1 shows the typical surface relaxation
where the electric relaxation time, is defined as of the orientation accompanied by a diffusion in the bulk of
the rotational velocityd. The characteristic time of this evo-
lution is 7, and so it depends on the field that has produced
the initial equilibrium profile (see also[12]): this time is
larger thanrg, but is still shorter than the relaxation time
It follows from Eq.(17) that after the removal of the field associated with a typical Federicksz transition. In practice,

:2%55:276, (34)

Y1
Te=10 . (35

the evolution ofd is governed by Te could be 10us for a 10 Vjum voltage applied across a
cell with Freedericksz transition at 1 Wm.
9= fﬁ 9"~ 1 d sin 29. (36) At early times the relaxation takes place as if an effective

field were slowly reduced in time with an effective coher-

At later times, the surface angle will approach zero and it£nce lengtite(z,t). This length is defined by pretending that
evolution will become even slower while the profile keeps is a solution to Eq(32) with &, instead ofé,. By com-

diffusing in the bulk. paring this equation and E¢36) we readily arrive at
This picture is confirmed by numerical solutions of Eq. .

(36) subject to Eq(21) for a number of initial conditions. It gg 2760

is expedient to introduce the subsurface relaxation time = (39

defined as %ﬁ(z,t) sin 29
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Initially ée= &., and an estimate for the incipient dynam-
ics easily follows from Eq(38):
tand=tand|,_qe Y7 for t—0". (39
At later times,%e and &, start to differ from one another at

the surface, because the rotational velocity decreases close
the surface, while it diffuses into the bulk. We call this evo-

lution adiabatic, as it can be regarded as a sequence in tim

of equilibrium profiles. All these results confirm the conjec-
ture already made ifil2]: although the surface alone could
intrinsically relax faster, it is slowed down by the orientation
curvature needed to match the bulk profile.

VI. FAST DYNAMICS

The adiabatic dynamics does not reveal the short tigme

associated with the full strength of the surface field, jusI‘I

because close to equilibrium it is almost balanced by th
curvature density)” concentrated within the dilution length.
The memory of the field, kept in the bulk curvature over a
characteristic lengtl., relaxes with rate-gl.

Higher rotational velocities can be expected when the in
tial profile is flat. As above, we discard the cafe= 7/2
because its relaxation can be driven only by fluctuations. W

can imagine, for instance, applying a sufficiently strong;

shear that produces the profile=Jy,<#/2 from the one
obtained by an electric field above saturation. We study her
the relaxation dynamics after the instantaneous removal
both shear and field.

In [12] it was conjectured that for such an initial profile

(0]
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0.776 -~
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z/h
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FIG. 2. Evolution starting from the constant profife= w/4.
Two adjacent profiles differ in time by OzR. The initial reorien-
ation builds up curvature that compensates the surface torque; then
he evolution becomes slower.

tive curvature everywhere, except close to the boundary
whered’ has to vanish. This requirement creates a positive
curvature densityd”">0.

The accuracy of the estimate in E40) is shown in Fig.
, where the actual evolution §ti||, computed numerically
is compared to the exponential bound in E40). The right-
hand side of Eq(30) actually represents assculatingexpo-
ﬁential to||u||, att=0.
All this concerns incipient dynamics. To show the evolu-
tion at later times, we plot in Fig. 4 the function

the subsequent dynamics consists of two parts: In the first

one, the flat profile builds up curvature density close to
the boundary during the short timg; in the second one, an

adiabatic evolution takes place as above with a longer time

7.:=(L/h) 75. The characteristic time of the incipient relax-
ation can indeed be estimated asfrom Eq. (36), which at
the initial time and forz=0 gives 2r;0=d(0)sin 2.

A finer description of the incipient dynamics is delivered
by the following argument. We take agailiz) = exp(—zh)
and explore the consequences of inequalB®) when ¢
=19,. We first note that the right-hand side of Eg1) is —1
for all ¥, and soyy=~0.86. Then we write Eq(30) in a
shorter form:

|ull,<ag(1—e ™) (40)
and, forh<L, we estimate both the amplitudg, and the
relaxation timery as

Lain2 h* h* (41)
ag~ =SIN20g—>—3, To~Teo5~Th.
0 3 Oggyg 0 3527’3 h

We thus expect a fast incipient increase|of .
As an example, we calculate the evolution starting from
the constant profile}y= 7/4 with the same values of the

parameters as in Sec. V. In Fig. 2 we plot five profiles in the

evolution for O<t=<r7,. At first, the profile tends to adjust
itself to the shape of the exponential dilution function that

270

Ver(t) =ain29 ) (42)

It can be regarded as an effective rotational velocity. A
whole distribution of relaxation times is found in its decay,
which reflects the fact that a finite surface energy is dissi-
pated over a region ever penetrating the bulk, leading to a
slower and slower process.

0.06
Iull2
0.05

T T
numerical data
exponential estimate

0.04

0.03

0.02

0.01

v,

FIG. 3. The evolution of the difference norm in the incipient
dynamics. The osculating exponentialtat0 shows the shortest

determines the initial angular velocity. This induces a negarelaxation time.
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maximum atty=0; initially the relaxation time is 2, and
then it slightly decreases towatg while the memory of the
field fades away.

Vett

0.1 VII. CLASSICAL SURFACE VISCOSITY

In Sec. Il we discarded the Derzhanski-Petrov boundary
condition (8) because it is not generally consistent with the
evolution equation in the bulk. Nevertheless, it has been
adopted by many authors as it conveys the idea that the
balance of surface torques contains the essence of surface
dynamics[9,11]. Here we show that this idea can indeed be
given a precise meaning by interpreting the Derzhanski-

. . . . Petrov boundary condition within the dilution model.
2000 4000 6000 8000 10000 We adjust the director profile near the boundary so that it
Y complies with the Derzhanski-Petrov condition at the initial

FIG. 4. Effective rotational velocity a=0 as a measure of the {IMe: no discontinuity thus arises on the boundary at all

surface rotational velocity. No fixed time scale can be identified; thdimes, although the profile evolution is different. By compar-

surface dynamics becomes slower as the diffusion proceeds into tHBd the evolution that obeys the Derzhanski-Petrov condition
bulk. and that predicted by the dilution model, we can appreciate

how they depart from one another in time. Singein Eq.
To make our discussion more quantitative, we define at7) is a phenomenological parameter, choosing it so as to
each timet, an amplitudgA(to)| and a relaxation rate(t;) ~ minimize this departure offers a means to relate the surface

0.01

0.001 &
0

by requiring that the exponential length| and the dilution lengtl.
We now illustrate by example both the incompatibility
A(tg)e "ttt 4B (43)  arising from the Derzhanski-Petrov boundary condition and

our strategy to remedy it. In the same setting employed in

be osculating the graph of the functica(t):=[lu, att  Sec. Ill, the dynamic equation in the bulk takes the general
=t5. An easy computation gives form

a 32 9 "
r(to)=—=  andA(tg)=— . (44) 71 9=K&"+F(E, D), (49
a t=t a t=t
0 0 where 9 is the angle that the director makes with the bound-

In Fig. 5 we plot|A| againstr usingt,e[0,107] as a pa- ing plate,K is the elastic modulus, arfd is a function that

rameter for the same evolutions shown in Figs. 1 and 2. Fofléscribes the action of an external field with strerigth F
the fast relaxation, the maximum amplitude actually appear¥@nishes wheneve does; it is easily seen that EQ7) is a
for r~1~8.57, at the timet,~67,. Indeed,r, would be the SPecial case of Eq45). Let now do(t) = d|,-o denote the
relaxation time of an isolated layer with thicknessn the ~ diréctor orientation at the surface. The typical Rapini-
absence of bulk. The relaxation rate with maximum ampli-Papoular surface energy densiti is given by

tude is here reminiscent of this pure surface relaxation mode: A

it conveys througth information on the internal structure of W= Sir? 9, (46)
the surface. For the slow relaxation, the amplitude attains its 2

12 where A is the strength of the anchoring. The dynamic

fast

1Al | | | | slow ——— boundary condition obtained from EB) with Eq. (7) then
v ! _ reads as
i ] il , 1
08 / ?li}ozz‘} |Z:O—Ism2190, (47)

0.6 1
/ wherel is defined as in Eq(16).

os | / | At equilibrium, the left-hand sides of both E¢5) and

’ } Eq. (47) vanish. When the field is abruptly switched o,

0z L \ _ undergoes a jump, and according to E45) 9+0. Since,
/\\ however, at the initial time the director profile is unchanged,
o . . . — Eq. (47), which does not depend on the field, still requires
o1 ! 10 100 1000 10000 100000 90=0, and so Eqs(45) and(47) fail to be compatible at the

()" L
very beginning.

FIG. 5. Osculating exponentials. Parametric plots of the ampli- ~ This incompatibility can be removed by adjusting the ini-
tude versus the dimensionless relaxation rate for both fast and sloial director profile. To this end we change both the slope and
dynamics. the curvature of the initial profile close to the boundary so
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0.786

/4 T T T T T
9 B A — s A
0.784 S e 1 surface viscosity yy h ——
e B dilution model --------
0.782 ] surface viscosity zero -~
0.78 _
0778 | 1
surface viscosity vy h ——
0.776 | dilution model --—-— J
e surface viscosity zero -
0774 [/ i
0.772 .,:" _
077 b/ 1
0.768 | 1
0.766 .
1 2 3 4 5
z/h
n/s 1 1 1 1 1
FIG. 6. Snapshots at= 7, from the evolution of the adapted and 0 50 100 :/50 200 250 300
Th

nonadapted profiles. The initial nonadapted profiléis 7/4; it is

adapted to surface viscosities witk 0 andh. FIG. 7. Comparison of the surface orientation for the evolution

hat the bulk and f . I velociti h of adapted and nonadapted profiles. The initial nonadapted profile is
that the bulk and surface rotational velocities match. We Pery= wl4; it is adapted to surface viscosities witk0 andh. The

form a local adaptation that affects the functian(z)  giace evolution predicted by the dilution model can be mimicked
=%~ over a lengthé underneath the surface=0. For- by a surface viscosity falling between 0 amgh.

mally, we replacep by

. 5 time for the three different evolutions. The graph obtained
¢a(2)i=(1+aze ") e(2). (48) from the dilution model is uniformly bounded between those
Clearly, ¢,(0)=¢(0), and, sincep’ (0)=0, of the adapted evolutions with=0 andh; this suggests that
choosing the surface lengthin the interval[0,h] would
2u make the surface relaxation of the adapted initial profile
¢,(0)=ag(0) and ¢5(0)=— z @(0)+¢"(0). agree with that of the nonadapted one. A similar computation

(490 was performed for the relaxation from equilibrium after re-
moval of the field; for every € [0,h] the surface relaxation

On the other hand, wheR vanishes,p, causes both Egs. of the adapted profile was almost indistinguishable from that
(45) and (47) to deliver the same surface rotational velocity of the nonadapted one.
att=0, provided that This is an exact way of interpreting the Derzhanski-Petrov
condition. Although it cannot be properly applied to all ini-
tial director profiles, it can be to the adapted ones. The com-
parison between the evolution of adapted and nonadapted
profiles shows that the phenomenological surface lemgth
By inserting Eq.(49) into Eq. (50), this latter becomes an hidden in the surface viscosity is indeed close to the lehgth
equation fore, which yields over which the surface potential extends into the bulk.

in2¢(0
o= 250 o). (50

_ ¢sin2p(0)+2L1¢'(0)]
- 2L(21+¢)¢(0)

@ (51) VIIl. CONCLUSIONS

We studied the relaxation of the anchoring of nematic
Thus Eq.(48) delivers an adapted initial profile, which  liquid crystals close to a solid boundary. We employed a
complies with the Derzhanski-Petrov boundary condition.mathematical model where the orienting field at the interface
The adaptation lengti can be chosen so as to makg the  between the liquid crystal and the solid substrate is not con-
closest possible t@: the shorter, the smaller the deviation centrated at the boundary, but is diluted over a small, though
betweene, and¢. For « as in Eq.(51), ¢, evolves accord-  still macroscopic, layer with thickness We studied a model
ing to Eqgs.(45) and (47). problem where the preferred orientation induced by the sur-
We solved these equations numerically fo= /4 and  face field is parallel to the boundary. The nematic orientation
different values ofl and £&. While varying ¢ in the interval s distorted by an electric field orthogonal to the bounding
[0,h] had almost no effect on the evolution qf,, the plate. The equilibrium problem had already been treated in
changes in were detectable. Figure 6 illustrates the snap{12,14). Here we attacked the dynamical problem that arises
shots att=7, from three different evolutions, namely, the when an initial profile is allowed to relax freely. We consid-
one ruled by the dilution model and those corresponding t@red two classes of initial profiles, namely, equilibrium pro-
=0 andh: relative to the first one, the surface evolution is files obtained by applying and then abruptly removing an
quicker forl=0 and slower foll =h; in both caseg=h/2.  electric field with strength below saturation, and flat profiles,
Figure 7 shows a different view of the same comparisonpossibly produced by combining fields above saturation and
here the surface orientatia¥|,_ is plotted as a function of an applied shear flow, both suddenly removed. We wrote the
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evolution equation for this problem, made analytical esti-the relaxation rate of the mode with maximum amplitude is
mates for its main features, and computed its solutions nut/r,, associated now with the surface field, which reveals an
merically. intrinsic property of the anchoring.

The main result of this paper is the dramatic difference in  We have evidence that these results are valid for a large
the relaxation dynamics following initial states in theserange of parameters and different dilution laws, provitied
classes. The evolution starting from equilibrium profiles after<| . |t could be useful to measure these relaxation processes,
removal of the field follows adiabatically quasiequilibrium first to check the validity in dynamics of the dilution model,
profiles corresponding to lower electric fields; the characterand then possibly to obtain information on the internal struc-
istic relaxation time is of the order, = y,L?/K (or largej, ture of the surface by comparing with 7 .
which depends only on the total strength of the diluted sur-  For simplicity, we have not considered here the effective
face potentiaA=K/L. In general is smaller than the typi- viscosity introduced in12] to account for the backflow; ac-
cal size of nematic cells, so that should be considered as a tually, any flow has been neglected in the relaxation. We
short time in standard nematodynamics. In this mode thé&ave numerical evidence that the reduction of viscosity due
relaxation is indeed controlled by the bulk, and the surfaceo backflow could slightly modify these results, but it would
remains at equilibrium. The real surface relaxation modenot change the difference between the slow and fast relax-
where most of the dissipation is localized near the boundaryation. This will be illustrated elsewhere.
corresponds to what is here called the fast mode; it is asso- The Derzhanski-Petrov dynamical boundary condition,
ciated with the other class of initial profiles, whose charac-which introduced the surface viscosify, has been widely
teristic time is found to be of the order af,=y,hL/K.  accepted up to now because it seemed to convey a physical
Since in the dilution model employed here<L, then7s  meaning: it was natural to derive a surface viscous torque
<. Atlater times, however, this fast mode is hampered byfrom a localized surface dissipation. An important point
bulk diffusion and behaves as a slow mode. made at the beginning of our work is the condition on the

In principle, it seems plausible to realize a flat initial pro- initial director profile required to make bulk and surface dy-
file by using an external fiel&., that is extremely large and namics compatible. This compatibility restriction prevents
has suitable orientation. One could then argue that there ihie general use of the Derzhanski-Petrov boundary condi-
only one class of free relaxation problems to discuss, that igsion. We have developed a general strategy to adapt the ini-
those originating from profiles produced by a field: the re-tial profile so as to make this condition applicable. The in-
laxation mode with maximum amplitude should then corre-teresting outcome of the comparison between this adapted
spond to the relaxation rate7l/ which diverges likeE2. In  evolution and the one predicted by the dilution model is that
fact, this is true as long as the coherence lerggthssociated the surface length hidden iny, turns out to be close to the
with the applied fielcE., is larger tharh: the curvature den- thicknessh of the layer where the surface potential is diluted
sity present in the bulk before relaxation keeps memory ofnto the bulk. With such a proper choice for the surface vis-
the field and determines a relaxation rate,1/When, how-  cosity, the classical Derzhanski-Petrov model and the dilu-

ever, &, is smaller tharh, no memory of the field is left and tion model give comparable outcomes.
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